Lessons from the trenches

Designing Bulletproof React/Redux Apps
JazzCon.tech 2018

Jeff Barczewski

o @jeffbski
o jeff@codewinds.com
e https://codewinds.com/jazzcon2018

https://codewinds.com/jazzcon2018

Jeff Barczewski

Married, Father, Catholic
28 yrs (be nice to the old guy :-)

JS (since 95, exclusive last 6 years)

Open Source: redux-logic, pkglink, ...
Founded CodeWinds, live/online training
(React, Redux, Immutable, RxJS) - | love
teaching and mentoring, contact me

CodeWinds Training

Live training (in-person or webinar)

Self-paced video training classes (codewinds.com)
Need training/mentoring for your team on any of these?
= React

= Redux

redux-logic

RxJS

JavaScript

Node.js

» Functional approaches

I'd love to work with you and your team

OLIR FRAMEWORK
MLUST BE REALLY
. _\U REALLY GOOD_/{
Se

\)} s

ayod g yasb

500
~ '“) LINES STACK ! ”. .
TRACE?

"LEAKY ABSTRACTIONS"

See "The Law of Leaky Abstractions" from Joel Spolsky
(http://www joelonsoftware.com/articles/LeakyAbstractions.html)
Over 10 years old but still true.

Good Framework by Geek & Poke Licensed CC BY 3.0

http://geek-and-poke.com/geekandpoke/2013/10/26/leaky-abstractions
http://creativecommons.org/licenses/by/3.0/deed.en_US

This is UN-BE-LIEV-A-BLE!!!
This is definitely
a bug in the compiler or in the OS.

.(/P4
ﬁ
Oops,
(v atypo
. w000

Just happened

Just Happened by Geek & Poke Licensed CC BY 3.0

http://geek-and-poke.com/geekandpoke/2017/8/13/just-happened
http://creativecommons.org/licenses/by/3.0/deed.en_US

What inspires you?

F15 Eagle

F-15E Strike Eagle by Gerry Metzler -

IMG 214 Licensed CC BY-SA 2.0

—

F L

| SR o <

| 28 p >
e oy

*

.

Afghanistan, F-15E 391st" by Staff
Sgt. Aaron Allmon (USAF) - Src.
Public domain

http://commons.wikimedia.org/wiki/File:F-15E_Strike_Eagle.jpg#mediaviewer/File:F-15E_Strike_Eagle.jpg
http://www.flickr.com/people/78624913@N03
http://www.flickr.com/photos/flyguy71/7445610794/
http://creativecommons.org/licenses/by-sa/2.0
http://commons.wikimedia.org/wiki/File:Afghanistan_Flyover,_F-15E_from_391st_Expeditionary_Fighter_Squadron_deploys_flares_during_a_flight_over_Afghanistan,_Nov._12,_2008.jpg#mediaviewer/File:Afghanistan_Flyover,_F-15E_from_391st_Expeditionary_Fighter_Squadron_deploys_flares_during_a_flight_over_Afghanistan,_Nov._12,_2008.jpg
http://www.defenselink.mil/dodcmsshare/WeekInPhotos/2008-11/hires_081112-F-7823A-160a.jpg

Life happens

F15 Single Wing Landing

) :
i “
=

F-15 Single wing by Israeli Defense
Force

e ’ W = T L rp et e B L TR T T
"I_' i ._._' 3 i |ii I.:: f %; e I'-‘"'.-'.'_ ":".= :'I.‘-:?:“'_-rEE:...I L r
s PR SRR L = e
B 4 __...." l_.l:. N i gl i e g e

Baat ""l...".‘.'::':_.':" A L

o L
— —

F-15 Single wing landing by History
Channel

http://theaviationist.com/2014/09/15/f-15-lands-with-one-wing/
http://www.ilbe.com/index.php?mid=jjal&sort_index=regdate&order_type=desc&page=5&document_srl=162629436

Traits that inspire me

e Performant
e Adaptability
e Durability

e Trusted

Resilient Systems

Broad
Utility

T ———

N Resilient
Solutions

Optimal
Solutions

Recover

In general, how resilient is today's software?

How do we build rock solid apps?

Designing Bulletproof Resilient React/Redux
Apps

e Modularize your code

e Embrace a functional style

e Preventing surprises

e Business Logic

e Unitand Full end to end testing
e Tools and libraries that will help

e Use an intuitive code structure
e Planning for the journey

Programs are meant to be read by humans and only
incidentally for computers to execute. - Donald Knuth

Leon Bambrick (y Follow)
@secretGeek

There are 2 hard problems in computer science: cache
invalidation, naming things, and off-by-1 errors.
9:20 AM - Jan 1, 2010

O10 TU11,011) 490 o

There are two problems in computer science: there’s
only one joke, and it isn’t funny. - Phil Karlton

Modularize

e Break large files into smaller manageable ones
= Hard to do once it is cluttered
e Break large functions into smaller ones
= Easy to reason about small pure functions
e Giving naming extra thought
= Be consistent
= Helps everyone find things
» Refactoringis a pain

combine reducers (optionally nested) to
separate state

import product from '../product';
import user from '../user';

export default combineReducers({
product: product.reducer,
user: user.reducer

});

Use same structure for action types & state

export const PRODUCT ADD = 'product/ADD';
export const PRODUCT DELETE = 'product/DELETE';

export const USER ADD = 'user/ADD';

import product from '../product';
import user from '../user';

export default combineReducers({
product: product.reducer,
user: user.reducer

}):

redux-actions - AC / reducer helpers

// product/actions.js
import { createAction } from 'redux-actions’;
// actionCreators that also return the action type when toString()'d
export const add = createAction('product/ADD');
export const remove = createAction('product/REMOVE');
export const foo = createAction(
'product/FO0"',
(a, b) = ({ a, b }) // payload will be { a, b }
)i
export const bar = createAction(
'product/BAR',
(a, b, c) => a, // payload will be a
(a, b, ¢) => ({ b, ¢ }) // meta will be { b, c }
)i
const addAction = add({ id: 1, name: 'widget' });
// { type: 'product/ADD', payload: { id: 1, name: 'widget' }}
const removeAction = remove(l);
// { type: 'product/REMOVE, payload: 1 }
const fooAction = foo (10, 20);
// { type: 'product/FO0', payload: { a: 10, b: 20 }}
const barAction = bar(1l, 2, 3);
// { type: 'product/BAR', payload: 1, meta: { b: 2, c: 3 }}

https://github.com/reduxactions/redux-actions

redux-actions - (p2)

// product/actions.js
import { createActions } from 'redux-actions';

const actions = createActions|({

product: {
ADD: null, // use identity fn for payload

REMOVE: undefined, // use identity for payload
FOO: (a, b) => ({ a, b }), // payload will be { a, b }
BAR BAZ: [

(a, b, ¢) => a, // payload will be a

(a, b, ¢) => ({ b, ¢ }) // meta will be { b, c }

}
}):

// It will still convert the action object structure to camel case
const barAction = actions.product.barBaz(l, 2, 3);
// { type: 'product/BAR BAZ', payload: 1, meta: { b: 2, c: 3 }}

export default actions.product; // exports { add, remove, foo, bar }

https://github.com/reduxactions/redux-actions

redux-actions - (p3)

// product/reducer.js
import { handleActions } from 'redux-actions';
import productActions from './actions';

const initialState = { a: null, b: null };

// create a reducer to handle all the actions
export default handleActions({
[productActions.add]: (state, action) => { // product/ADD
// add reducer code
}o
[productActions.remove]: (state, action) => { // product/REMOVE
// remove reducer code
b
[productActions.foo]: (state, action) => { // product/FOO
// add reducer code
b
[productActions.bar]: (state, action) => { // product/BAR
// remove reducer code

}
}, initialState);

https://github.com/reduxactions/redux-actions

greppable code

Make it easy on yourself, so you can instantly find

constants
action types
functions
components

Selectors free our state structure

const state = {
items: |
{ id: 1, name: 'Foo', catId: 20 },
{ id: 2, name: 'Bar', catId: 30 }
1/
categories: |
{ catId: 20, name: 'Games' },
{ catId: 30, name: 'Business’' }

]
}i
const itemsSelector = state => state.items;
const categoriesSelector = state => state.categories;

import {get} from 'lodash/fp';

const itemsSelector = get('items');
const categoriesSelector = get('categories');

const firstCategoryNameSelector = get('categories[0].name');

Combining (Naively)

const itemsWithCategoriesSelector = state => {
const items = itemsSelector(state);
const categories = categoriesSelector(state);
const findCategory = catId => find(c => c.catId === catId) (categories);

const itemsWithCategories = items.map(i => {
const category = findCategory(i.catId);
return compose (
set('category', category),
unset('catId’)
) (1)
})i

return itemsWithCategories;

}i

Reselect - memoized selectors

import { createSelector } from 'reselect’;

const itemsWithCategoriesSelector = createSelector(

itemsSelector,
categoriesSelector,

(items, categories) => {
const findCategory = catId => find(c => c.catlId === catId) (categories);
return items.map(i => {
const category = findCategory(i.catlId);
return compose (
set('category', category),
unset('catId')

)(1);

What does your fs structure tell you?

Typical react-redux-project/src

actions/
components/
containers/
reducers/
routes. js

What does your fs structure tell you? (p2)

Typical react-redux-project/src

actions/
components/
Header. js
Sidebar.js
User. js
UserProfile.js
UserAvatar. js
containers/
reducers/
routes. Jjs

What does your fs structure tell you? (p3)

actions/
UserActions. js
components/
Header. js
Sidebar. js
User.js
UserProfile.js
UserAvatar. js
containers/
App.Jjs
User.js
reducers/
index. js
user.js
routes. js

Typical react-redux-project/src

Adapted from @francoisz

https://marmelab.com/blog/2015/12/17/react-directory-structure.html

Adding a feature

actions/
ProductActions. js <= Here
UserActions. js

components/
Header. js
Sidebar. js
Product. js <= Here
ProductList.]js <= Here
ProductItem. js <= Here
ProductImage. js <= Here
User.js

UserProfile.js
UserAvatar. js
containers/
App.Jjs
Product. js <= Here
User.js
reducers/
index. js
foo.js
bar. js
product. js <= Here

—_———m e —_—

Features cross concerns

Action Creators

Reducers

from Cristiano Rastelli’s “Let There Be Peace on CSS” talk

https://speakerdeck.com/didoo/let-there-be-peace-on-css

Organize by feature or domain

app/
Header. js
Sidebar. js
App.Jjs
index. js
reducer. js
routes. js
product/
Product. js
ProductContainer. js
ProductList. js
ProductItem. js
ProductImage. js
actions. js
index. js
reducer. js
user/
User.]js
UserContainer. js
UserProfile.js
UserAvatar. js
actions. js

P NI] I NPV =~

Tests live near the code

app/
Header. js
Header.test. js
Sidebar. js
Sidebar.test.js
App.Jjs
App.test.js
index. js
reducer. js
reducer.test.]js
routes. js
routes.test. s
product/
Product. js
Product.test. js
ProductContainer. js
ProductContainer.test.js
ProductList. s
ProductList.test.js
ProductItem. js
ProductItem.test.js
ProductImage. js

[o WD, PEDE B PO N | I A —

product/index.js

import * as actions from './actions';
import reducer from './reducer';

import Product from './Product';

import ProductList from './ProductList'
import ProductItem from './ProductItem'’
import ProductImage from './ProductImage';

e e

export default {

actions,

reducer,

Product,
ProductContainer,
ProductList,
ProductItem,
ProductImage

feature-u

feature-u is a utility library that facilitates feature-based project
organization in your react project. It assists in organizing your project by
individual features.

https://feature-u.js.org/

https://feature-u.js.org/

feature-u revealed

e Concepts - https://feature-u.js.org/cur/concepts.html
e Benefits - https://feature-u.js.org/cur/benefits.html
e Usage - https://feature-u.js.org/cur/usage.html

https://feature-u.js.org/cur/concepts.html
https://feature-u.js.org/cur/benefits.html
https://feature-u.js.org/cur/usage.html

feature-u example

e Basic expense tracking app
e Add expense amount and description
e Display List of expenses

feature-u example - bootstrapping

import ReactDOM from 'react-dom';

import {launchApp} from 'feature-u';

import {reducerAspect} from 'feature-redux';

import {routeAspect} from 'feature-router'; // basic state router
const features = [];

export default launchApp({

aspects: |
reducerAspect, // enables redux
routeAspect, // enables a simple state router

1,

features,

registerRootAppElm(rootAppElm) {
// where do we want to render this?
ReactDOM.render (rootAppElm, document.getElementById(myAppRoot'));

Se

feature-u example - expenses feature

import React from 'react';

import {createFeature} from 'feature-u';

import {featureRoute} from 'feature-router';

import {slicedReducer} from 'feature-redux';

import expensesReducer from './reducer'; // traditional reducer for expenses
import ExpenseList from './list-ui'; // simple comp ({list}) => ...
const KEY = 'expenses';

// define where I want this state mapped in redux, feature-redux ensures unique
const reducer = slicedReducer(my.feature.$S{KEY} , expensesReducer);
export const expenseListSelector = appState => reducer.getSlicedState(appState).list

export default createFeature({
name: KEY,
route: featureRoute({
content ({app, appState}) { // render content if expenseList is defined
const expenselList = expenselListSelector (appState);
if (expenselList) return <ExpenseList list={expenseList} />;

}o
})y

reducer

}):

feature-u example - dashboard feature

import React from 'react';
import {createFeature} from 'feature-u';
import {featureRoute, PRIORITY} from 'feature-router';

import {slicedReducer} from 'feature-redux';

import dashboardReducer from './reducer'; // traditional reducer for expenses
import Dashboard from './dashboard-ui'; // simple comp ({dashboard, expenses})
import expenselistSelector from '../expenses';

const KEY = 'dashboard';

const reducer = slicedReducer(my.feature.${KEY} , expensesReducer);

export const dashboardSelector = appState => reducer.getSlicedState(appState).list;

export default createFeature({
name: KEY,
route: featureRoute({
priority: PRIORITY.HIGH, // run this one the others
content ({app, appState}) { // render content if dashboard is defined
const dashboard = dashboardSelector (appState);
const expenses = expenselistSelector(appState);
if (dashboard) return <Dashboard data={dashboard} expenses={expenses} />;

b
})y

reducer });

feature-u example - adding redux-logic

import ReactDOM from 'react-dom';

import {launchApp} from 'feature-u';

import {reducerAspect} from 'feature-redux';

import {logicAspect} from 'feature-redux-logic'; // <--- new import
import {routeAspect} from 'feature-router'; // basic state router
const features = [];

export default launchApp({

aspects: [
reducerAspect, // enables redux
logicAspect, // <--- enables redux-logic, hooked into middleware
routeAspect, // enables a simple state router

1,

features,

registerRootAppElm(rootAppElm) {
// where do we want to render this?
ReactDOM.render (rootAppElm, document.getElementById(myAppRoot'));

P

feature-u example - expenses feature w/redux-logic

import
import
import
import
import
import
import

const KEY = 'expenses';

React
{createFeature}
{featureRoute}
{slicedReducer}
expensesReducer
ExpenselList
logic

from
from
from
from
from
from
from

'react’;
'feature-u'

.
4

'feature-router';
'feature-redux';

'./reducer'
'./list-ui'
'./logic';

4
°
4

// traditional reducer for expenses
// simple comp ({list}) => ...
// array of redux-logic items for expenses

const reducer = slicedReducer(my.feature.${KEY} , expensesReducer);
export const expenselListSelector = appState => reducer.getSlicedState(appState).list

export default createFeature({

name

route:

b
})y

: KEY,

featureRoute({
content ({app,
const expenselist

appState})

{ // render content if expenselList is defined
expenselListSelector (appState);

if (expenselList) return <ExpenselList list={expenselList} />;

reducer,

logic

}):

// <---- feature-redux-logic aspect added new property for logic

Where to learn more about feature-u

e https://feature-u.js.org/- Home

e http://bit.ly/feature-u - Blog article introducing

e https://github.com/KevinAst - repos for feature-u, feature-redux,
feature-redux-logic, feature-router

e https://github.com/KevinAst/eatery-nod - react-native (expo) example
app using feature-u, redux, redux-logic

e More to come

https://feature-u.js.org/
http://bit.ly/feature-u
https://github.com/KevinAst
https://github.com/KevinAst/eatery-nod

Where can we implement business logic in
react/redux?

Goals for our business logic

e Full state

e Dispatch

e Intercept (validate/transform)
e Async Processing

e Cancellation / Latest

e Filter / debounce / throttle

e Apply across many types

e One place for all logic

e Simple

e Load from split bundles

Where can we implement business logic in
react/redux?

Action Creator “ove Event Handler

) user
action))
interactions

Dispatch Redux Update React / Ul

thion CYCle props /

Middleware action at Provider

Reducer

Common ways to implement business logic

e fat action creators

e reducers

e thunks

e sagas - redux-saga

e epics - redux-observable
e effects - redux-loop

e custom middleware

e redux-logic

My CodeWinds blog article discussing each method

https://codewinds.com/blog/2016-08-16-business-logic-redux.html

My current preferences on business logic

e redux-logic - https://github.com/jeffbski/redux- loglc
= declarable

= supports interception, async
processing, cancellation

= UsSe promises, async/await,
observables

e redux-observable or redux-most - second
choice

= requires more knowledge of observables or most's monadic streams
e custom middleware - powerful but DIY

https://github.com/jeffbski/redux-logic
https://redux-observable.js.org/
https://github.com/joshburgess/redux-most

redux-logic example

import { createLogic } from 'redux-logic';

const fetchPollsLogic = createLogic({
// declarative built-in functionality wraps your code
type: FETCH POLLS, // only apply this logic to this type
cancelType: CANCEL FETCH POLLS, // cancel on this type
latest: true, // only take latest

// your code here, hook into one or more of these execution
// phases: validate, transform, and/or process
process({ getState, action }, dispatch, done) {
axios.get('https://survey.codewinds.com/polls"')
.then(resp => resp.data.polls)
.then(polls => dispatch({ type: FETCH POLLS SUCCESS, payload: polls }))
.catch(err => {
console.error(err); // log since could be render err
dispatch({ type: FETCH POLLS FAILED, payload: err, error: true })

})
.then(() => done()); // call done when finished dispatching

redux-logic example 2

import { createLogic } from 'redux-logic';

const fetchPollsLogic = createLogic({

)

// declarative built-in functionality wraps your code
type: FETCH POLLS, // only apply this logic to this type
cancelType: CANCEL FETCH POLLS, // cancel on this type
latest: true, // only take latest

processOptions: {
// provide action types or action creator functions to be used
// with the resolved/rejected values from promise/observable returned
successType: FETCH POLLS SUCCESS, // dispatch this success act type
failType: FETCH POLLS FAILED, // dispatch this failed action type

b

// Omitting dispatch from the signature allows you to simply
// return obj, promise, obs not needing to use dispatch directly
process({ getState, action }) {
return axios.get('https://survey.codewinds.com/polls"')
.then(resp => resp.data.polls);

14

Testing - Unit / Integration Testing

jest - https://facebook.github.io/jest/
mocha - works with Node.js also -
https://mochajs.org/

expect style

= built-in to jest

s https://github.com/mjackson/expect
» chai also has an expect style

enzyme - http://airbnb.io/enzyme/

= primarily using mount

= css selectors

https://facebook.github.io/jest/
https://mochajs.org/
https://github.com/mjackson/expect
http://chaijs.com/api/bdd/
http://airbnb.io/enzyme/

Testing - End to End Testing

e selenium web driver - https://webdriver.io and many others

e nightmarejs -
http://www.nightmarejs.org/
» electron based (selenium not required)

e headless chrome

node.js code and API available

exciting to go direct to the browser
Google supporting directly
I'm excited about this space!

https://github.com/GoogleChrome/puppeteer and many other libs

https://webdriver.io/
http://www.nightmarejs.org/
https://github.com/GoogleChrome/puppeteer

Testing - export testable

e make your private functions testable
= export as testable
= communicates privacy but still usable for testing

function foo(a, b) {

}

function bar(c, d) {

}

const mainThing = { ... };
export default mainThing;

export const testable = {
foo,
bar

}i

Functional JS

// simple, testable, functional component
export const App = ({todos, actions}) => (
<div>
<Header addTodo={actions.addTodo} />
<MainSection todos={todos} actions={actions} />
</div>

)

// connect returns a HOC wrapped component
export default connect(

state => ({ // maps redux state to props
todos: state.todos
1)
dispatch => ({ // binds action creators to dispatch
actions: bindActionCreators(TodoActions, dispatch)
})
) (APP) ;

Functional JS Advantages

e Easytoreason about especially for pure functions

e Composition is simple

e Separation of concerns - do one thing well

e Testing is easy for stateless functions

e Treating data immutably reduces surprises and enables features like
undo and auditing

e Eventdriven system like Redux creates predictable one directional data
flow and makes it easy to react in multiple domains

e Frees code to be executed in an optimal way (time shift, concurrent
processing)

redux early

e allows you to stay functional with your React components
= maps the state for your app
s stateis easily segmented using combineReducers
= one directional update
= connect () - maps, binds, optimized renders
= redux dev tools - awesome for debugging

Stateless function components

const Orders = ({ orders }) => (

{ orders.map(x => (
<li key={x.id}>{ x.name } - { x.date }</1i>
))}

) ;

Stateless Function Components

Advantages

Extremely simple, easy to reason about

Easy to test, no state, pass props to test
modes

Pure functions - input + output, nothing else
No need to use “this”, props are local
variables

= Modular and reusable

FaceBook team will continue to create optimizations. Favors functional
style.

Recompose

Utility library for creating HOC's

= "The lodash for React"

npm install recompose

Compose in common functionality using parameterized HOC functions
Allows you to stay in the functional world

s Stateless function components

https://github.com/acdlite/recompose

https://github.com/acdlite/recompose

Solving problems with Recompose

import { pure, onlyUpdateForKeys, defaultProps, renameProps } from 'recompose’;
const PureProfile = pure(Profile);

const OptimProfile = onlyUpdateForKeys([name', 'age']) (Profile);

const DefaultedComp = defaultProps|({

greeting: 'Hello'
}) (Comp) ;

const EntComp = renameProp('first', 'firstName') (Profile);

composing branch, renderComponent, and lifecycle

import { compose, lifecycle, branch } from 'recompose’;
const Loading = props => <div>Loading...</div>;

const MainContent = ({ items }) => (

{ items.map(x => <1li key={x.id}>{x.name}</1i>) }

) ;

const DynamicContent = compose(

lifecycle({
componentDidMount () {
axios.get('http://yourserver.com')
.then(res => { this.setState({ items: res.data.result}); });

}
})y

branch (
props => !props.items,
renderComponent (Loading))
) (MainContent) ;

Immutable data

e treat your data as immutable

= prevents surprises

= helps you reason about your code

= problems due to mutations are hard to track down
e doesn't require immutable.js

= map, filter, reduce rather than forEach

m object spread or use helpers - lodash/fp, timm, updeep, ramda
e eslint plugins to help you prevent mutations

s eslint-plugin-immutable - no-let, no-this, no-mutation

» eslint-plugin-fp - additional fp style rules

https://github.com/jhusain/eslint-plugin-immutable
https://github.com/jfmengels/eslint-plugin-fp

lodash/fp

already built-in to lodash

alternate functional style interface to lodash commands

s treats data immutably and curries

= switches main data parameter last (in most commands) to enable
composition

= curries

names are familiar to many so adoption is pretty easy

» often already included in many projects

needs better docs for fp usage (see jfmengels/lodash-fp-docs)

https://github.com/jfmengels/lodash-fp-docs

lodash/fp usage

npm install --save lodash

import fp from 'lodash/fp'; // get all lodash/fp commands as object
import get from 'lodash/fp/get'; // single method import
import { get, set } from 'lodash/fp'; // import named methods

// can use babel-plugin-lodash to transform into modularized imports

lodash/fp immutable helpers

import { set } from 'lodash/fp';

const statel = {
a: 1,
b: {
bb: [10, 20, 30]
b
c: {
cc: {
ccc: 'hello’
}
}
}i

const statela = set('c.cc.ccc', 'hi', statel);
const statelb = set(['c', 'cc', 'ccc'], 'hi', statel)

const changeCCCToHiFn = set('cc.ccc.ccc', 'hi');
const statelc = changeCCCToHiFn(state0);

lodash/fp p2

import {set, update} from 'lodash/fp';

// can also use array paths using [n]
const state2a = set('b.bb[1l]', 200, statela);
const state2b = set(['b', 'bb', 0], 200, statela);

// setting a path that doesn't exist creates necessary objects
const state2 = set('d.dd.ddd', 'I am new', statelc);

// increment a by °

const state3 = update('a’', x => x + 1, state2);

// append an item to b.bb
const state3 = update(
'b.bb’,
arr => arr.concat(40),
state?);

Form Helpers

wrap your form with a HOC, provide initialState, submit handler
helper/HOC provides value, onChange, onBlur handlers to your fields
helper/HOC provides onSubmit and onReset to your form

manages temporary form state

validates fields, provides errors after touched

validates all, marks as touched when form is submitted

disables your submit button once submitting

calls your submit handler with all values when form submits and passes
validation

My favorite React form helpers

formik - Build forms in React, without the tears

= supports yup for easy declarative object validation

» supports displaying individual field errors or combined
react-final-form - High performance subscription-based form state
management for React

» uses observables to selectively update fields

= mainly geared to display errors next to fields

both are in active development with lots of contributors

why not redux-form? - testing is more difficult when redux is required

https://github.com/jaredpalmer/formik
https://github.com/jquense/yup
https://github.com/final-form/react-final-form#-react-final-form

Formik - React form helper

import { Formik } from 'formik';
const page = ({ initialValues, onSubmit }) => <div>
<Formik initialValues={initialValues} onSubmit={onSubmit} >
{ ({values, errors, touched, handleChange, handleBlur, handleSubmit,
handleReset, isSubmitting}) =>
<form onSubmit={handleSubmit}>
<input type="email" name="email" onChange={handleChange}
onBlur={handleBlur} value={values.email} />
{ errors.email && touched.email &&
<div className="error">{errors.email}</div> }

<input name="first" onChange={handleChange}
onBlur={handleBlur} value={values.first} />

{ errors.first && touched.first &&
<div className="error">{errors.first}</div> }

<button type="submit" disabled={isSubmitting}>Submit</button>
<button onClick={handleReset}>Reset</button>
</form>

}

</Formik>
</div>;

20.

Formik - validationSchema Yup

import { Formik, Form, Field } from 'formik';
import Yup from 'yup';
const schema = Yup.object({
email: Yup.string()
.email('Invalid email address')
.required('Email is required'),

first: Yup.string().max(30, 'First name can be a max of 30 chars')
1) i
const page = ({ initial, onSubmit }) => <div>
<Formik initialValues={initial} onSubmit={onSubmit} validationSchema={schema}>
{ ({errors, touched, isSubmitting}) =>
<Form>

<Field type="email" name="email" />
{ errors.email && touched.email &&
<div className="error">{errors.email}</div> }
<Field name="first" />
{ errors.first && touched.first &&
<div className="error">{errors.first}</div> }
<button type="submit" disabled={isSubmitting}>Submit</button>
</Form>

}

</Formik></div>;

20.

4

Formik - Resources / Demos

e Formik

» https://github.com/jaredpalmer/formik
= Basic form demo

= [nput primatives / Yup validation

= other demos

e Yup

m https://github.com/jquense/yup
= Yup runkit

20.

https://github.com/jaredpalmer/formik
https://codesandbox.io/s/zKrK5YLDZ
https://codesandbox.io/s/qJR4ykJk
https://github.com/jaredpalmer/formik#demos
https://github.com/jquense/yup
https://runkit.com/jeffbski/5ab1a59f8968bb00125ff605

What does your README say?

RDD - Readme Driven Development

e Write the README first

e Start with description and goals

e Create example of using the API

e Share early to get feedback

e Thisis probably the most important doc to write

W

en do you create a PR?

22.

Create your PR early

Before you are writing the code

Share the README, example, notes, or docs first

Can use labels to indicate the stage of development

Use the PR to discuss ideas, API, and implementation details before you
even begin to code

Even if you decide against building the feature, the PR stays around to
capture the coversations that took place

npm scripts
Create npm run scripts for your common bash commands for the project.

e npm run will give a list of all available commands

npm start - start up your developer auto build environment
npm test -runyour test suite

Make it a goal to be able to just npm install for complete setup
Add others as necessary

pre/post scripts - pretest will run before test

npm-run-all package provides run-p and run-s commands

= run-p watch:* foo bar - starts all these in parallel

» run-s cat dog-runsthese sequentially

https://github.com/mysticatea/npm-run-all

eslint - your early warning radar

catch problems even before saving
configure for your teams' style
prevent the most common
mistakes

works in most editors or from
command line

Reproduceable JS builds

e Lock down the versions of everything in your project
= use package-lock.json - newer npm
= oryarn.lock with yarn
= or npm-shrinkwrap.json from older npm
e Can tar/zip project with node_modules
= will need to rebuild if using different architecture
e Might even consider creating Debian packages

Reproduceable Environments

e For Mac, homebrew's brew bundle Brewfile -checks, installs,
updates

e Ansible - only requires SSH on the server

e docker-compose

e other container/image tools

devtools react/redux

learn and embrace the tools

easily learn what components are used and their props and state
quickly learn about redux state changes and what is occuring in the
system

community continues to improve

Summary

Modularize and simplify your code
Use combineReducers to ;
separate state, selectors to
find

Structure your code by
feature, try feature-u

Use functional JS and treat
data immutably using
immutable helpers or
object spread

For business logic, try redux-logic, redux-observables, custom mw
Tools: recompose, lodash/fp, formik, yup, redux-actions

Use consistent structure for action types and state

Thanks

nttps://codewinds.com/jazzcon2018 (slides, resources)
https: //codewinds.com/ (newsletter tips/training)
jeff@codewinds.com

@jeffbski

https://codewinds.com/jazzcon2018
https://codewinds.com/

