
Unlock the power of feature-based JSUnlock the power of feature-based JS
development - JSConf 2018development - JSConf 2018

Jeff BarczewskiJeff Barczewski

jeff@codewinds.com
@jeffbski

https://codewinds.com/jsconf2018
1

https://codewinds.com/jsconf2018

Artist: Abstruce Goose CC-BY-NC 3.0 US

2

Jeff BarczewskiJeff Barczewski
Married, Father, Catholic
28 yrs as developer (be nice to the old guy :-)
JS (since 95, my focus for last 7 years)
Open Source: redux-logic, pkglink, …

Founded CodeWinds, training/consulting

Functional JS, React, Redux, RxJS, Node.js

I love teaching and mentoring, contact me

3 . 1

CodeWindsCodeWinds
Live training (in-person or webinar)
Need training/mentoring for your team on any of
these?

React, Redux, redux-logic
JavaScript, Node.js
Functional JS
RxJS
GraphQL, Apollo, Prisma
FaaS, Serverless

Code reviews, architecture help, small projects
I'd love to work with you and your team

3 . 2

Why feature-based developmentWhy feature-based development
so�ware is complex
MVP, sprints, evolve code
git commits, PR's merge a feature at a time
organize by feature
A/B testing, feature switches, early
adopters

4 . 1

ChallengesChallenges
maintaining
flexibility
wiring, boilerplate
cross-feature sharing
hooks, dependencies

4 . 2

Previous Attempts (and limitations)Previous Attempts (and limitations)
PR's - merge conflicts, timing, deps, hard to A/B
Boilerplate projects - rigid tech and structure, can get stale
DI frameworks - complex, not designed for feature-based
development
Global object - collisions, no usage contracts, no wildcard selection

4 . 3

Feature-UFeature-U
Feature Based Project Organization for ReactFeature Based Project Organization for React

Authored by Kevin Bridges

http://feature-u.js.org

https://github.com/kevinast/feature-u

5 . 1

http://feature-u.js.org/
https://github.com/kevinast/feature-u

Feature-U BenefitsFeature-U Benefits
designed for feature development
simple, flexible
cross-feature sharing
encapsulation / org by feature
easy to test and A/B
dramatically reduced
boilerplate/wiring
life cycle hooks
aspects for extension
validation and usage contracts

5 . 2

High-level OverviewHigh-level Overview
create and register features
instantiate and register aspects
launch app with features and assets
features define fassets for cross-feature
sharing
features use fassets as necessary
feature-u can help manage/validate fassets

6 . 1

6 . 2

Usage - StructureUsage - Structure
src/
 index.js ... launches app using launchApp()

 features/
 index.js ... accumulate/promote all Feature objects (within the app)

 featureA/ ... a feature (within the app)
 actions.js
 comp/
 ScreenA1.js
 ScreenA2.js
 index.js ... promotes featureA object using createFeature()
 logic.js
 reducer.js
 featureB/ ... another feature
 ...

7 . 1

Usage - Feature ObjectUsage - Feature Object
import {createFeature} from 'feature-u';
import reducer from './state';
import logic from './logic';

export default createFeature({
 name: 'featureA', // a unique feature name
 enabled: true, // optional, default is true

 fassets: { // use, define, and/or defineUse
 define: {
 'foo.xyz.comp': () => ... implementation omitted,
 'foo.actions': actions
 },
 },

 reducer, // sliced reducer (feature-redux aspect content)
 logic, // logic array (feature-redux-logic aspect content)

 appWillStart({ fassets, curRootAppElm }) { ... },
 appDidStart({ fassets, appState, dispatch }){ ... }
});

7 . 2

Usage - Feature AccumulationUsage - Feature Accumulation
import featureA from './featureA';
import featureB from './featureB';
import featureC from './featureC';
...

// promote ALL our features through a single import (accumulated in an array)
export default [
 featureA,
 featureB,
 featureC
];

7 . 3

Usage - launchAppUsage - launchApp
import ReactDOM from 'react-dom';
import {launchApp} from 'feature-u';
import {createReducerAspect} from 'feature-redux';
import {createLogicAspect} from 'feature-redux-logic';
import features from './features';

// launch our app, exposing the Fassets object (facilitating cross-feature sharing)
export default launchApp({ // *4*

 aspects: [// *1*
 createReducerAspect(), // redux ... extending: Feature.reducer
 createLogicAspect() // redux-logic ... extending: Feature.logic
],

 features, // *2*

 registerRootAppElm(rootAppElm) { // *3*
 ReactDOM.render(rootAppElm, getElementById('root'));
 }
});

7 . 4

8

Cross feature sharing - usage contractsCross feature sharing - usage contracts
const feature = createFeature({
 name: 'foo',

 fassets: {
 use: [// I am using these fassets from other features
 'bar.link.comp', // default is required to exist
 ['cat.route.comp', { required: false }], // not required
 ['dog.action.d', { type: validationFn }], // type validation
 '*.main.link.comp' // wildcard match, array of comps
],

 define: { // defining some fassets, not required to be used
 'foo.actions': actions
 },

 defineUse: { // defining more fassets, expected to match a use
 'foo.link.comp': linkComp,
 'foo.route.comp': routeComp
 }
 }
});

9 . 1

9 . 2

Usage - Accessing fassets in featuresUsage - Accessing fassets in features
1. withFassets HOC
2. fassets provided in life cycle hooks -
appWillStart, appDidStart

3. expandWithFassets expand feature
aspect content

4. launchApp returns fassets object

See in feature-u docsCross feature Communication

9 . 3

https://feature-u.js.org/cur/crossCommunication.html

Code WalkthroughCode Walkthrough
simple web app
Expo (react-native)
application

10

Best PracticesBest Practices
1. Avoid cross feature imports

use fassets defined by features
helps your features to be plug and play
easy to test without complex mocking
simple to A/B test, swap features

2. Take advantage of the usage contracts
3. Use wildcard selectors to reduce hardcoded

refs
4. featureName is required to be unique

can use to namespace actions, state, logic, fasset names
if feature spans many files, export from a file

11

SummarySummary
feature-u simplifies feature-based development

cross-feature sharing
usage contracts / validation
life cycle hooks
reduced wiring and boilerplate
flexible and extensible

This technique could be applied to other
frameworks and languages

12

ThanksThanks
 - slides

 - feature-u docs
 - repo

(training/consulting)
jeff@codewinds.com @jeffbski

https://codewinds.com/jsconf2018
https://feature-u.js.org
https://github.com/kevinast/feature-u
https://codewinds.com/

13

https://codewinds.com/jsconf2018
https://feature-u.js.org/
https://github.com/kevinast/feature-u
https://codewinds.com/

